15 research outputs found

    Enhanced Particle Swarm Optimization-Based Models And Their Application To License Plate Recognition

    Get PDF
    Model pengecaman corak memainkan peranan yang penting dalam banyak aplikasi dunia sebenar seperti pengesanan teks dan pengecaman objek. Pelbagai kaedah termasuk model Kecerdikan Berkomputer (CI) telah dibangunkan untuk menangani masalah pengecaman corak berasaskan imej. Tertumpu kepada model CI, penyelidikan ini mempersembah model berasaskan pengoptimuman kawanan zarah (PSO) yang cekap serta aplikasinya untuk pengecaman lesen plat. Pertama, model Pengoptimuman Kawanan Zarah Memetik berasaskan pengukuhan pembelajaran yang baharu (RLMPSO) diperkenalkan. Masalah pengoptimuman penanda aras digunakan untuk menilai prestasi RLMPSO, dan kaedah bootstarp digunakan untuk menilai keputusan secara statistik. Kedua, RLMPSO disepadukan dengan mesin Penyokong Vektor Kabur (FSVM) untuk merumuskan model RLMPSO-FSVM yang cekap. Secara khusus, RLMPSO-FSVM terdiri daripada gabungan pengelas linear FSVM yang dibina menggunakan RLMPSO untuk melaksanakan penalaan parameter, pemilihan ciri, serta pemilihan contoh latihan. Untuk menilai prestasi model RLMPSO-FSVM yang dicadangkan, pangkalan data imej penanda aras digunakan. Ketiga, model dua-peringkat RLMPSO-FSVM dicipta untuk mempertingkatkan lagi kecekapan. Ia mengandungi peringkat pengecaman global dan peringkat pengesahan tempatan. Peningkatan model RLMPSO turut diperkenalkan dengan memasukkan operasi carian tambahan. Model RLMPSO yang (ERLMPSO) dipertingkatkan terdiri daripada tiga lapisan, iaitu lapisan global dengan empat operasi carian, lapisan tempatan dengan satu operasi carian, dan lapisan berasaskan komponen dengan dua belas operasi carian. Akhir sekali, model dua-peringkat ERLMPSO-FSVM yang dicadangkan telah digunapakai dalam masalah Pengecaman Plat Lesen Kereta Malaysia (VLPR) yang sebenar. Kadar pengecaman setinggi 98.1% telah diperoleh. Keputusan ini mengesahkan keberkesanan model dua-peringkat ERLMPSO-FSVM yang dicadangkan dalam menangani masalah pengecaman plat lesen. ________________________________________________________________________________________________________________________ Pattern recognition models play an important role in many real-world applications such as text detection and object recognition. Numerous methodologies including Computational Intelligence (CI) models have been developed in the literature to tackle image-based pattern recognition problems. Focused on CI models, this research presents efficient Particle Swarm Optimization (PSO)-based models and their application to license plate recognition. Firstly, a new Reinforcement Learningbased Memetic Particle Swarm Optimization (RLMPSO) model is introduced. To assess the performance of RLMPSO, benchmark optimization problems are employed, and the bootstrap method is used to quantify the results statistically. Secondly, RLMPSO is integrated with the Fuzzy Support Vector Machine (FSVM) to formulate an efficient RLMPSO-FSVM model. Specifically, RLMPSO-FSVM comprises an ensemble of linear FSVM classifiers that are constructed using RLMPSO to perform parameter tuning, feature selection, as well as training sample selection. To evaluate the performance of the proposed RLMPSO-FSVM model, a benchmark image database is employed. Thirdly, to further improve efficiency, a two-stage RLMPSO-FSVM model is devised. It consists of a global recognition stage and a local verification stage. In addition, enhancement of the RLMPSO model is introduced by incorporating additional search operations. The enhanced RLMPSO model (i.e. ERLMPSO) comprises three layers, namely, a global layer with four search operations, a local layer with one search operation, and a component-based layer with twelve search operations. Finally, the proposed two-stage ERLMPSOFSVM model is applied to a real-world Malaysian vehicle license plate recognition (VLPR) task. A high recognition rate of 98.1% has been achieved, confirming the effectiveness of the proposed two-stage ERLMPSO-FSVM model in tackling the license plate recognition problem

    Transfer Learning of Pre-Trained CNN Models for Fingerprint Liveness Detection

    Get PDF
    Machine learning experts expected that transfer learning will be the next research frontier. Indeed, in the era of deep learning and big data, there are many powerful pre-trained CNN models that have been deployed. Therefore, using the concept of transfer learning, these pre-trained CNN models could be re-trained to tackle a new pattern recognition problem. As such, this work is aiming to investigate the application of transferred VGG19-based CNN model to solve the problem of fingerprint liveness recognition. In particular, the transferred VGG19-based CNN model will be modified, re-trained, and finely tuned to recognize real and fake fingerprint images. Moreover, different architecture of the transferred VGG19-based CNN model has examined including shallow model, medium model, and deep model. To assess the performances of each architecture, LivDet2009 database was employed. Reported results indicated that the best recognition rate was achieved from shallow VGG19-based CNN model with 92% accuracy

    Scalability of mobile cloud storage

    Get PDF
    Today, there are high demands on Mobile Cloud Storage (MCS) services that need to manage the increasing number of works with stable performance. This situation brings a challenge for data management systems because when the number of works increased MCS needs to manage the data wisely to avoid latency occur. If latency occurs it will slow down the data performance and it should avoid that problem when using MCS. Moreover, MCS should provide users access to data faster and correctly. Hence, the research focuses on the scalability of mobile cloud data storage management, which is study the scalable on how deep the data folder itself that increase the number of works

    A computer-aided detection system for automatic mammography mass identification

    Full text link

    A hybrid deep learning model for face sketch recognition

    No full text
    This paper introduces a hybrid deep learning model which integrates particle swarm optimization (PSO) with VGG-face deep learning network for face sketch recognition problem. Particularly, the proposed hybrid model incorporates PSO into VGG-face to find the best filters of the last layer that have the highest contribution in face sketch recognition. In addition, PSO performs fine-tuning for the selected filter to enhance recognition rate accuracy. To assess the performances of the proposed hybrid model, LFW face sketch benchmark images are used in this study. Reported results show that PSO can reduce VGG- face model complexity and increase recognition accuracy to 76% on LFW benchmark images

    A new reinforcement learning-based memetic particle swarm optimizer

    Full text link
    Developing an effective memetic algorithm that integrates the Particle Swarm Optimization (PSO) algorithm and a local search method is a difficult task. The challenging issues include when the local search method should be called, the frequency of calling the local search method, as well as which particle should undergo the local search operations. Motivated by this challenge, we introduce a new Reinforcement Learning-based Memetic Particle Swarm Optimization (RLMPSO) model. Each particle is subject to five operations under the control of the Reinforcement Learning (RL) algorithm, i.e. exploration, convergence, high-jump, low-jump, and fine-tuning. These operations are executed by the particle according to the action generated by the RL algorithm. The proposed RLMPSO model is evaluated using four uni-modal and multi-modal benchmark problems, six composite benchmark problems, five shifted and rotated benchmark problems, as well as two benchmark application problems. The experimental results show that RLMPSO is useful, and it outperforms a number of state-of-the-art PSO-based algorithms

    Scalability of Mobile Cloud Storage

    No full text
    Today, there are high demands on Mobile Cloud Storage (MCS) services that need to manage the increasing number of works with stable performance. This situation brings a challenge for data management systems because when the number of works increased MCS needs to manage the data wisely to avoid latency occur. If latency occurs it will slow down the data performance and it should avoid that problem when using MCS. Moreover, MCS should provide users access to data faster and correctly. Hence, the research focuses on the scalability of mobile cloud data storage management, which is study the scalable on how deep the data folder itself that increase the number of works

    Study of VGG-19 depth in transfer learning for COVID-19 X-Ray image classification

    No full text
    Modern-era largely depends on Deep Learning (DL) in a lot of applications. Medical Images Diagnosis is one of the important fields nowadays because it is related to human life. But this DL requires large datasets as well as powerful computing resources. At the beginning of 2020, the world faced a new pandemic called COVID-19. Since it is new, shortage of reliable datasets of a running pandemic is a common phenomenon. One of the best solutions to mitigate this shortage is taking advantage of Deep Transfer Learning (DTL). DTL would be useful because it learns from one task and could work on another task with a smaller amount of dataset. This paper aims to examine the application of the transferred VGG-19 to solve the problem of COVID-19 detection from a chest x-ray. Different scenarios of the VGG-19 have been examined, including shallow model, medium model, and deep model. The main advantages of this work are two folds: COVID-19 patient can be detected with a small number of data sets, and the complexity of VGG-19 can be reduced by reducing the number of layers, which consequently reduces the training time. To assess the performance of these architectures, 2159 chest x-ray images were employed. Reported results indicated that the best recognition rate was achieved from a shallow model with 95% accuracy while the medium model and deep model obtained 94% and 75%, respectively

    A memetic-based fuzzy support vector machine model and its application to license plate recognition

    Full text link
    In this paper, a novel fuzzy support vector machine (FSVM) coupled with a memetic particle swarm optimization (MPSO) algorithm is introduced. Its application to a license plate recognition problem is studied comprehensively. The proposed recognition model comprises linear FSVM classifiers which are used to locate a two-character window of the license plate. A new MPSO algorithm which consists of three layers i.e. a global optimization layer, a component optimization layer, and a local optimization layer is constructed. During the construction process, MPSO performs FSVM parameters tuning, feature selection, and training instance selection simultaneously. A total of 220 real Malaysian car plate images are used for evaluation. The experimental results indicate the effectiveness of the proposed model for undertaking license plate recognition problems
    corecore